

Current version v1.1.2

PAG (Portable Animated Graphics) is a special animation file format designed for high-performance rendering scenarios, which
can store vector images, text, bitmaps and sequence frames at a very high compression ratio, and make full use of the hardware
acceleration capabilities of each platform to quickly decode and render to screens of various sizes at high speed. The main features of the
PAG file format are as follows:

• Screen rendering. It is mainly designed for screen rendering scenarios, not for editable animation content exchange between various
animation creation tools, so the key direction of optimization is rendering performance and file size.

• Scalability. The basic data structure is based on the description of labeled data blocks, which allows for the continuous addition of new
action feature support while maintaining backward compatibility with older file formats.

• High compression rate. Pure binary data structure, dynamic bitwise storage with extremely high compression rate and similar block
centralized compression technologies can achieve an average file size of only 10% to 50% of other formats for the storage of the same
animation content.

• File independence. A single file can integrate any resources, such as vectors, images, text, sequence frames, and even audio and video.
The single-file delivery capability can achieve a more concise workflow.

• High-speed rendering. The file format is simple and does not contain any string-matching process. Compared with the decoding
speed of text configuration files, binary streams have significant advantages. This format can be optimized during encoding, and the
direct data required for the rendered scenario can be converted in advance, so the animation content can be rendered on the screen faster.

PAG files have the suffix.pag

This chapter introduces the basic data types and the more complex data structures formed from them. All other data structures in the PAG
document format are composed of these basic types.

The PAG file format supports 8-bit, 16-bit, 32-bit, 64-bit signed and unsigned integer types. All integer values are stored in the PAG file in
binary form. PAG's byte storage uses little-endian byte order: the lowest-order byte is stored at the lowest memory address, and the highest-
order byte is stored after it. All integer types are byte pairs. The first bit of an integer value must be stored as the first bit of the byte in the
PAG file.

Integer Table

Type Remarks

Int8 8-bit integer

Int16 16-bit integer

Int32 32-bit integer

Int64 64-bit integer

Uint8 unsigned 8-bit integer

Uint16 unsigned 16-bit integer

Uint32 unsigned 32-bit integer

Uint64 unsigned 64-bit integer

A byte bit is used in the PAG file to identify the Boolean type.

Boolean Class Type Table

Type Remarks

Bool 0 : false , 1: true

The PAG file supports the single precision float type according to IEEE 754 standard.

Float Type Table

Type Remarks

Float Single precision (32 bit) IEEE Standard 754

For the same data type stored continuously, we add the [n] symbol after the data type to represent it, where n indicates the degree of the array.
For example, Uint8[10] represents an array of Uint8 type, with a degree of 10. If two parentheses are added consecutively, such as Int8
[n][m], it means a two-dimensional array, the length of the first dimension array is m, and each value type is an Int8[n] array.

The PAG supports encoded integers of variable byte length. Four encoded integer types are supported.

Encoded Integer Table

Type Remarks

EncodeInt 32 Variable-length encoded 32 -bit integer

EncodeUint 32 Variable -length encoded 32 -bit unsigned integer

EncodeInt 64 variable-length encoded 64 -bit integer

EncodeUint 64 Variable -length encoded 64 -bit unsigned integer

Variable-length encoding uses bytes as the minimum storage unit, and uses the first seven bits of a byte to store values, and the eighth bit to
identify whether there is any value behind. If the 8th bit is 0, it indicates that the value has been read. If the 8th bit is 1, then read one byte
down until the length is read (32 bits or 64 bits).

The following is an example of parsing unsigned 32-bit encoded integers:

uint32_t ByteBuffer::readEncodedUint32() {

static const uint32_t valueMask = 127;

static const uint8_t hasNext = 128;

uint32_t value = 0;

uint32_t byte = 0;

for (int i = 0; i < 32; i += 7) {

if (_position >= _length) {

Throw(context, "End of file was encountered.");

break;

}

byte = bytes[_position++];

value |= (byte & valueMask) << i;

if ((byte & hasNext) == 0) {

break;

}

}

return value;

}

For signed 32-bit encoded integers, the unsigned 32-bit encoded value is read first, and then the high-bit identifier is determined.

The following is the parsing of signed 32-bit encoded integers:

int32_t ByteBuffer::readEncodedInt32() {

auto data = readEncodedUint32();

int32_t value = data >> 1;

return (data & 1) > 0 ? -value : value;

}

Bit
The bit type value is a variable-length bit field that can represent two types of numbers:

1. Unsigned integer

2. Signed integer

Bit values are not byte aligned. Other types of values, such as Uint8 and Uinit16, are always byte-aligned. If a byte-aligned type immediately
follows a Bit type, zero padding is used for the extra bits in the last byte, except for the Bit value.

The following example is a 64-bit data stream. 64 bits represent 9 values of different bit lengths, the last one is the value of Uint16.

The first value of the bit stream is a 6-bit value (BV1), followed by a 5-bit value (BV2) that spans Byte1 and Byte2. The value of BV3 spans
Byte2 and Byte3. BV4 is all in Byte3. BV9 is followed by a byte-aligned value, so the remaining 4 bits in the last Byte use zero padding.

Bit Value Type

Type Remarks

SB[nBits] Integer (nBits is the number of specified bits)

UB[nBits] Unsigned integer (nBits is the number of specified bits)

Bit
The Bit data type generally uses the smallest number of bits required for storage. Most Bit-type fields use a fixed number of bits. Generally,
for a group of Bit type data, the minimum number of bits required for storage of this set of data will be calculated. The value of this smallest
bit will be stored in another data structure. In this minimum bit range class, the extra bits are filled with zeros in high bits.

Continuous Data Encoding
We use the continuous data encoding method to store a set of continuous data of the same type to achieve the least number of data storage
bits.

For the storage of continuous unsigned integers, we add a header area in front of the continuous unsigned integer data. The data in the header
area is used to identify the number of bits stored in the continuous unsigned integer data. The following continuous unsigned integer data will
be stored according to this number of bits.

Take the storage of continuous 32-bit unsigned integers as an example. The header area is 5 bits (32-bit unsigned integers occupy a maximum
of 4 bytes, 32 bits. The range of values that can be represented by 5 bits is 0-31. Removing this situation with 0, the preset addition of 1 can
indicate that the value range is 1-32). You should first calculate the maximum value and maximum value of continuous unsigned integer data,
and then calculate the number of bits required to store the two values. The maximum value of the two will be stored in the header area, and the
continuous unsigned integer data area stores unsigned integer data in sequence according to this value.

Its structure is as follows:

The storage method of continuous signed integers is the same as that of unsigned integers, the difference is that the nBits data read
by unsigned integers all represent numerical content, while the first bit of the nBits bit read from signed integers represents the sign bit
(0 positive, 1 negative), and the subsequent consecutive nBits-1 bits represent numerical content.

The process of reading a single signed integer can first follow the unsigned integer and then convert it to a signed integer separately:

For continuous float data, we usually retain the original precision and store it continuously according to the IEEE 754 standard without
special compression. However, for continuous float data representing some special categories that allow loss of precision, the encoding

int32_t ByteBuffer::readBits(uint8_t numBits) {
auto value = readUBits(numBits) ;
value <<= (32 - numBits);
auto data = static_cast<int32_t>(value);
return data >> (32 - numBits);

}

method is to convert the float lossy data into integer data through the float/precision, and then follow the above method for continuous integer
data format to encode. Currently, the following types of float data in the PAG file can be converted to integer storage according to the
corresponding precision:

Type Precision Remarks

SPATIAL_PRECISION 0.05 When the float number represents coordinate points in space

BEZIER_PRECISION 0.005 When the float number represents the precision of the Bezier curve easing parameter

GRADIENT_PRECISION 0.00002 When the float number represents the precision of the gradient interpolation position
parameter

Specific to the decoding process, the parsed integer data is multiplied by the precision to obtain specific float data.

In the computer storage method, Bool type data occupies 1 byte, 8 bits, but the effective data bit is only 1 bit, and redundant storage data
occupies 7 bits. For continuous Bool type data, we only use one bit to identify, thereby reducing redundant data storage.

Time
Time in the PAG file is uniformly described using Int64. In order to improve the efficiency of caching during rendering, the smallest time unit
is 1 frame, and the number of frames divided by the frame rate can be converted to an external time in seconds. But when storing files, all time
values are stored as EncodeUint64 instead of EncodeInt64. When describing animation effects, the time in most cases is a positive number,
and the negative time only appears during the rendering calculation process. However, using unsigned integer storage can occupy 1 bit less
space than signed ones, so unsigned integers are uniformly used when storing time to files. In addition, even if there is a small probability of
encountering negative time, the negative time can be restored normally according to unsigned storage and reading. The difference is that in the
case of a negative number, converting it to an unsigned integer is a huge number, which may take up an extra byte of space for encoding
integers. However, the probability of storing negative time in files is very low in general.

ID
The ID in the PAG file is uniformly described by Uint32, and EncodeUint32 is used for storage. Usually, Composition, Layer, and Mask will
have ID class attributes.

Enum
Uint8 is used in PAG files to store enumerated types. For specific enumeration types, refer to Chapter 2: Enumeration.

String
String types use a null character to mark the end.

Stirring Types

Field Type Remarks

String Uint8[0~n] non-empty character array

StringEnd Uint8 marks the end, always 0

Point
Point is used to record the position of the x and y axes.

Point Types

Field Type Remarks

x Float x-axis coordinate

y Float y-axis coordinate

Ratio
Ratio is used to store the ratio.

Ratio Type

Field Type Remarks

numerator EncodedInt32 numerator

denominator EncodedUint32 denominator

Color
Color represents a color value, usually composed of 24-bit red, green, and blue colors.

Color Types

Field Type Remarks

Red Uint8 Red value (0 ~ 255)

Green Uint8 Green value (0 ~ 255)

Blue Uint8 Blue value (0 ~ 255)

FontData
FontData identifies the font.

FontData Types

Field Type Remarks

fontFamily String Font description

fontStyle String Font style

AlphaStop
AlphaStop describes the gradient information of transparency.

AlphaStop Types

Field Type Remarks

position Uint16 Start point. The float type is stored in Uint16, and the real value needs to be multiplied by The precision
GRADIENT_PRECISION, Uint16() * 0.00002f

midpoint Uint16 Middle point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision
GRADIENT_PRECISION, Uint16() * 0.00002f

opacity Uint8 Transparency (0 ~ 255)

ColorStop
ColorStop describes the gradient information of color.

AlphaStopTypes

Field Type Remarks

position Uint16 Start point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision
GRADIENT_PRECISION, Uint16() * 0.00002f

midpoint Uint16 Middle point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision
GRADIENT_PRECISION, Uint16() * 0.00002f

color Color Color value

GradientColor
GradientColor is used to describe the gradient information of color and transparency.

GradientColor Types

Field Type Remarks

alphaCount EncodedUint 32 The length of the transparency gradient information array. A transparency gradient information
will include, starting point: position, middle point: midpoint, and transparency value opacity

colorCount EncodedUint 32 The color gradient information array. A color gradient information contains, starting point: position,
middle point : midpoint, and color value color

alphaStopList AlphaStop[alphaCount] Consecutive alphaCount AlphaStops

colorStopList ColorStop[colorCount] Consecutive colorCount ColorStops

The corresponding storage structure is as follows:

Text Document
TextDocument text information includes text, font, size, color and other basic information.

TextDocument Types

Field Field Type Remarks

applyFillFlag UB [1] Whether to apply a fill flag

applyStrokeFlag UB [1] Whether to apply a stroke flag

boxTextFlag UB [1]

fauxBoldFlag UB [1] Whether to apply a bold flag

fauxItalicFlag UB [1] Whether to apply an italic flag

strokeOverFillFlag UB [1]

baselineShiftFlag UB [1]

fi rstBaseLineFlag UB [1]

boxTextPosFlag UB [1]

boxTextSizeFlag UB [1]

fillColorFlag UB [1] Whether there is fill color information flag

fontSizeFlag UB [1] Whether there is a font size flag

strokeColorFlag UB [1] Whether there is a stroke color flag

strokeWidthFlag UB [1] Whether there is a stroke width flag

textFlag UB [1] Whether there is a text flag

justifi cationFlag UB [1] Whether there is alignment information flag

leadingFlag UB [1]

trackkingFlag UB [1]

hasFontDataFlag _ UB [1] Whether to include font information

 UB [5] All 0, byte alignment

baselineShift Float if baselineShiftFlag == 1

firstBaseLine Float if fi rstBaseLineFlag == 1

boxTextPosFlag Point if boxTextPosFlag == 1

boxTextSizeFlag Point if boxTextSizeFlag == 1

fillColor Color if fillColorFlag == 1

fontSize Float if fontSizeFlag == 1

strokeColor Color if strokeColorFlag == 1

strokeWidth Float if strokeWidthFlag == 1

text String if textFlag == 1

justifi cationFlag Uint8 if justificationFlag == 1

leadingFlag Float if leadingFlag == 1

trackingFlag Float if trackingFlag == 1

fontID EncodedUint32 if hasFontDataFlag == 1

Path
Path is used to identify information such as a path. The main information includes an action list and a coordinate list.

PathVerb Types

Field Type Attribute Value Coordinate Data Remarks

Close UB [3] 0 No need Close the current path to the path start point

Move UB [3] 1 Point Move the coordinate point to the specified position, and Point indicates the target
point to move to

Line UB [3] 2 Point Draw a line, and Point indicates the target point to draw a straight line to

HLine UB[3] 3 Float Draw a horizontal line, with the X-axis moving while the Y-axis remains the same as
the previous value. The float data represents the target position of X- axis
movement.

VLine UB[3] 4 Float Draw a vertical line, with the Y-axis moving and the X-axis remaining the same as the
previous value. The float data represents the target position of the Y-axis movement

Curve01 UB[3] 5 Point,

Point

Draw a cubic Bezier curve, with the first control point having the same
value as the end point of the previous action. The two points represent the
second control point and the end point, respectively.

Curve10 UB[3] 6 Point,

Point

Draw a cubic Bezier curve, with two points representing the first and second
control points, respectively, and the ending point being the same as the second
control point.

Curve11 UB[3] 7 Point,

Point,

Point

Draw a cubic Bezier curve with three points representing the first control
point, the second control point and the end point in sequence.

Path Types

Field Type Remarks

numVerbs EncodedUint32 The length of the action list

verbList UB[3][numVerbs] An array of action lists with a length of numVerbs, each value of the array is identified by a
UB[3] to an enumeration value in PathVerb.

numBits UB[5] Indicates the number of bits occupied by each value in the next floatList

fioatList SB[numBits]

[floatNum]

Used to provide an array of float values for coordinate points, the length is floatNum, and each
value of the array is stored by a SB[numBits]

The calculation of floatNum can refer to the coordinate data column in the PathVerb table, where a Point can be equivalent to two
consecutive Floats, representing the x and y coordinate values of the Point respectively. The value of floatNum is the total number of
required Float data accumulated based on the number of Floats required for each action type in the VerbList. For each value in the floatList
array, you need to read an SB[numBits] value first, then multiply it by SPATIAL_PRECISION to get a Float value.

For example, a rectangle (x: 5, y: 0, r: 15, b: 20) can be described by a Path data structure as follows:

• Execute Move to point (5, 0), need to record two Float values: 5, 0

• Execute HLine to point (15, 0), only need to record one Float value: 15

• Execute VLine to point (15, 20), only need to record one Float value: 20

• Execute HLine to point (5, 20), only need to record one Float value: 5

• Execute Close to close the rectangle and return to the starting point (5, 0), without recording any Float value.

A total of 5 actions (Move, HLine, VLine, HLine, Close) and 5 Float coordinate data (5, 0, 15, 20, 5) need to be recorded. The corresponding
Path storage structure is as follows:

The storage of each Float value in floatList is first multiplied by 20 (1/SPATIAL_PRECISION), converted to an integer, and then stored as
SB[numBits]. Among them, numBits is calculated based on the maximum value of 400 stored in the coordinate data. The binary
representation of 400 is 110010000, occupying 9 bits. After adding the sign bits, at least 10 bits are needed. Finally, when the length of
numBits is 10, it is sufficient enough to include each data in floatList.

 ByteData
ByteData identifies the length and content of the byte stream.

ByteData Types

Field Type Remarks

length EncodedUint32 Byte length

data Byte[length] Read length bytes

BitmapRect
Bitmap information.

BitmapRect Types

Field Field Type Remarks

x EncodedInt32

y EncodedInt32

fileBytes ByteData Image data

VideoFrame
Video frame information.

VideoFrame Types

Field Field Type Remarks

frame Time

fileBytes ByteData Video frame data , the byte stream does not contain (0, 0, 0, 1) four-byte Start Code

This chapter mainly describes the enumeration types used in PAG files and their meanings.

BlendMode
BlendMode Types

Type Value Remarks

Normal 0

Multiply 1

Screen 2

Overlay 3

Darken 4

Lighten 5

ColorDodge 6

ColorBurn 7

HardLight 8

SoftLight 9

Difference 10

Exclusion 11

Hue 12

Saturation 13

Color 1 4

Lu minosity 1 5

Add 1 6

DestinationIn 2 1

DestinationOut 2 2

DestinationATop 2 3

SourceIn 2 4

SourceOut 2 5

Xor 2 6

TrackMatteType
Type Value Remarks

None 0

Alpha 1

AlphaInverted 2

Luma 3

LumaInverted 4

MaskMode
Coverage type for the mask

MaskMode Types

PolyStarType
PolyStarType Types

Type Value Remarks

Star 0

Polygon 1

CompositeOrder
Composite Order Types

Type Value Remarks

BelowPreviousInSameGroup 0

AbovePreviousInSameGroup 1

FillRule

Type Value Remarks

None 0

Add 1

Subtract 2

Intersection 3

Lighten 4

Darken 5

Difference 6

Accum 7

FillRule Types

Type Value Remarks

NonZeroWinding 0

EvenOdd 1

LineCap
Type Value Remarks

Butt 0

Round 1

Square 2

LineJoin
LineJoin Types

Type Value Remarks

Miter 0

Round 1

Bevel 2

GradientFillType
GradientFillType Types

Type Value Remarks

Linear 0

Radial 1

MergePathsMode
MergePathsMode Types

Type Value Remarks

Merge 0

Add 1

Subtract 2

Intersection 3

ExcludeIntersections 4

TrimPathsType
TrimPathsType Types

Type Value Remarks

Simultaneously 0

Individually 1

ParagraphJustification
ParagraphJustification Types

Type Value Remarks

LeftJustify 0

CenterJustify 1

RightJustify 2

FullJustifyLastLineLeft 3

FullJustifyLastLineRight 4

FullJustifyLastLineCenter 5

FullJustifyLastLineFull 6

This chapter mainly introduces the structure of the PAG file and an overview of each element.

PAG
PAG files are mainly composed of FileHeader and TagBlock. TagBlock represents a data block consisting of a Tag list. All tags have the same
structure, so if you encounter something you don't understand when parsing a PAG file, you can skip the current tag directly.

File Header
All PAG files have the following structure at the beginning of the file. For the type field, please refer to the definition in Chapter 1.

FileHeader Structure

Field Type Remarks

Signature Uint8 signature byte, always ' P '

Signature Uint8 signature byte, always ' A '

Signature Uint8 signature byte, always ' G '

Version number Uint8 File version number, for example: 0x04 means PAG version 4

File length Uint32 File length (whole file, including FileHeader length)

Compression method Int8 The compression method of the identification file, reserved

The PAG file headers all start with the three characters ' P ' ' A ' ' G '.

Then the version number of the file is recorded. Note that the version number of the file is a value, not a character. For example, version
4 stores Ox04 instead of ASCII characters ' 4' (Ox 34). The current file version number is 1.

The file length is the total length of the PAG file, including the FileHeader section.

The compression method records the internal compression technique of the PAG file, which has not been used yet and is reserved.

TagBlock
Tag Block represents a data block consisting of Tag lists.

The structure of TagBlock is shown as follows:

Among them, TagEnd is a special Tag, which is usually used to mark the end of the loop at this level and there is no more Tag structure to
read. Some specific Tags will internally define whether they contain other sub-Tag lists, and also use TagEnd at the end to mark the end of the
sub-Tag list loop and there are no more Tags to read.

Tag
A Tag consists of two main parts: TagHeader and TagBody.

The structure of Tag is as follows:

TagHeader
TagHeader records TagCode (type ID of Tag) and the byte stream length of TagBody. Since the TagBody may be very short or very long, for
the sake of compression ratio, we divide the TagHeader into two types of short and long formats for storage. The short type TagHeader is used
to record the maximum 62 bytes of TagBody data. The long type TagHeader uses a 32-bit unsigned integer to record the length of TagBody,
which can store up to 4GB of data.

TagHeader (short) Types

Field Type Remarks

TagCodeAndLength Uint16 The first 10 bits are the TagCode and the last 6 bits are the
length of the TagBody.

Note: The TagCodeAndLength field reads two bytes at a time, instead of 10 bits followed by 6 bits. PAG files are stored in little-endian byte
order, so the two storage methods are different.

If TagBody is 63 bytes or longer, it is stored in a long type TagHeader. The long type TagHeader contains a short type TagHeader structure,
where the length of the TagBody recorded by the short type TagHeader is a fixed value: 0x3f (63), followed by a 32-byte unsigned integer
representing the true length of TagBody.

TagHeader (long) Types

Field Type Remarks

TagCodeAndLength Uint16 The first 10 bits are used as TaCode, and the last 6 bits are fixed as 0x3f to mark the
TagHeader as long type.

Length Uint32 The actual length of TagBody

TagBody

TagBody only defines a byte stream block, and the specific rules for parsing content are defined according to different TagCode categories.
TagBody is also allowed to be absent. For example, the length of the TagBody read from its TagHeader is 0 for the special TagEnd mentioned
earlier. Since the byte stream inside the TagBody can be completely customized, it can also be defined to continue to include a list of sub-Tags,
that is, there is a case where a Tag can also contain one or more sub-Tags, so as to realize nesting. The following chapters will explain in detail
how the TagBody corresponding to different TagCode categories is stored. Generally speaking, the internal storage of TagBody is the specific
data of an attribute list. The storage methods can be divided into two categories:

• If the attribute list described in TagBody is fixed from type to quantity, then the internal structure of the TagBody will directly arrange and
combine the basic data types provided in Chapter 1 for definition. Similar to the definition method of the Path data structure, a new data
structure is formed by using the existing data structure arrangement. When decoding, just pass the TagBody directly to the decoding module of
the corresponding category. For this type of Tag, we will directly list the data structure of its TagBody in a table in the following chapters.

• If the attribute list described in the TagBody is uncertain from type to quantity, a large number of additional identifier fields will be required.
At this time, using the above-mentioned method to define the data structure will waste a lot of file space. For this type of Tag, we will use the
dynamic data structure AttributeBlock to describe the content of the entire TagBody. Later chapters will introduce AttributeBlock in detail.

The previous chapters introduced the data structure of Tags. Before explaining how the TagBody corresponding to each Tag type is stored, we
first introduce a new dynamic data structure: AttributeBlock. When the attribute list to be stored is uncertain from type to quantity, a large
number of additional status identifier fields will be required. This dynamic data structure is mainly used to maximize the compression of these
identifiers and dynamically match different decoding modules according to the identifiers.

Value and Property Attributes
AttributeBlock is usually used to describe how to store the data of a set of attribute lists. Here we take the data structure of the Mask as an
example. The list of attributes it needs to store is as follows:

Field Type Remarks

id Uint32 Mask ID

inverted Bool Indicates whether the mask is inverted

maskMode Uint8 The blend mode of the mask

maskPath Property <Path> The vector path of the mask

maskOpacity Property<Uint8> Transparency of the mask

maskExpansion Property<Float> Edge extension parameters of the mask

So far, all we have introduced are basic data types. You can see that in the attribute list of Mask, the types of the first three attributes are also
this data type. These attributes are characterized by containing only one data value, and I can collectively refer to these attributes as Value
attributes. Here we introduce another type called timeline attribute. You can use Property<T> to refer to any kind of timeline attribute, and T
can be any basic data type such as Bool, String, Int8, Point, Path... and so on. If we replace T with a specific type, such as Property<Point>,
then it represents the time attribute of the Point class.

The main difference between the Value attribute and the Property attribute is that the Value attribute only contains one data value, while the
Property attribute usually contains multiple data values of the entire timeline. Depending on the number of keyframes, it can contain one or
more key points' data values. It can be simply understood as a collection of a series of Property values on the timeline. The Property attribute
also contains time easing parameters and spatial easing parameters, which are used to control how the data values between keyframes produce
instantaneous interpolation. The following chapters will introduce the storage structure of the Property attribute in detail. Here we only need to
understand its timeline concept.

For multiple attributes of Mask, the easiest way to store is to store the complete structure of each type, but obviously, this is a waste of space.
We can find many situations where redundant data exists:

• The inverted attribute is a Bool value, which needs to occupy 1 byte, but actually, only 1 bit can be used for identification.

• maskMode is usually equal to the default value. In this case, there is no need to store the actual value, and 1 bit is used directly to indicate that
it is equal to the default value.

• All Property attributes: 1. If there is no spatial easing parameter, the relevant data may not be stored. 2. If there is no keyframe, that is, there is
only one data value, the storage structure of the entire keyframe can be saved, and only one value can be stored. 3. If this value is still equal to
the default value, you can only use 1 bit to indicate that it is equal to the default value.

According to the above characteristics, it can be found that each attribute may have many special status flags, and making full use of these
status flags can significantly reduce the file size in most cases. Especially for the Property attribute, a very complex data structure is required
to record the complete storage of a timeline attribute. However, in most cases, the Property attribute may not have a keyframe, that is, it can be
degenerated into a Value attribute for storage, so the unnecessary space occupied can be significantly reduced. Therefore, we use the data
structure of AttributeBlock to describe this storage scenario that requires a large number of status flags.

AttributeBlock Structure
AttributeBlock mainly consists of two parts : by AttributeFlag The flag field consisting of lists and the AttributeContent A content
area composed of lists. Tool The body structure is as follows:

AttributeBlock is mainly composed of two parts: the flag bit area composed of the AttributeFlag list and the content area composed of the
AttributeContent list. The specific structure is as follows:

The sequence of each AttributeFlag corresponds to the sequence of AttributeContent. Each time an attribute list is given, we split the flag
bit information and data content information of each attribute into a pair of AttributeFlag and AttributeContent structures, and then store
them in order. For example, AttributeFlag 0 and AttributeContent 0 correspond to the ID attribute of the first item in the Mask attribute list.
It can be seen from the figure that the storage structure is to store all the Flag lists before starting to store all the Content lists. This is done
because each item in the Flag area is usually represented by a bit, and centralized storage can avoid frequent byte alignments, resulting in a lot
of space waste. After reading the Flag area, a unified byte alignment will be performed, and the extra bits generated by the byte alignment will
be set to 0, and then continue to store the AttributeContent area from the integer byte position.

Note: In order to save file space, the number of attribute lists is not written into the file, but is hardcoded in the parsing code because the
number of attributes for each specific AttributeBlock is fixed. During the parsing process, the number of attributes to be parsed can be known
in advance.

AttributeFlag

By summarizing the characteristics of the Value attribute and Property attribute, we abstract the following AttributeFlag data structure.

AttributeFlag Types

Field Type Remarks

exist UB[1] Identifies whether the corresponding AttributeContent exists

animatable UB[1] Whether there is keyframe information, this field exists only when exist is 1

hasSpatial UB[1] Whether there is spatial easing information, this field exists only when both exist
and animatable are 1

Each attribute can parse out such a data object describing the flag information, which is used to assist in decoding the subsequent
AttributeContent area. However, the specific storage length of AttributeFlag generated by each attribute is dynamic, and the value range is
0 to 3 bits. For example, the Value attribute may only occupy 1 bit at most, and only the exist flag will be read during decoding. The Property
attribute will use up to 3 bits to store flag information. For example, when a Property attribute does not contain keyframes and the attribute
value is equal to the default value, it only uses 1 bit (0) to store AttributeContent. If the exist flag is read as 0 during decoding, subsequent
reads of the flag will be discarded. In the limit case, the entire attribute list does not contain keyframes and is equal to the default value, and
finally only occupies the number of bits in the list to store all the exist flags as 0, and the entire Content area is empty. This can significantly
reduce the file size that needs to be logged.

AttributeType

As mentioned earlier, the actual storage size of AttributeFlag may be 0 to 3 bits, and the Value type attribute will only read 1 bit fixedly.
Therefore, when decoding, it is also necessary to know the specific attribute type in order to determine the reading rules of AttributeFlag.
Earlier, we roughly divided attributes into Value and Property categories. In fact, they can be subdivided into multiple subcategories to further
compress the space according to attribute characteristics. The following are all attribute categories used in the PAG file, and their
corresponding bits in the Flag area:

AttributeType Types

Type Flag Area Remarks

Value Fixed to 1 bit Ordinary Value attribute

FixedValue Not occupied Fixed Value attribute

BitFlag Fixed to 1 bit Value attribute of Bool value type

SimpleProperty Occupy 1 ~ 2 bits Simple animation property

DiscreteProperty Occupy 1 ~ 2 bits Discrete animation property (no interpolation)

MultiDimensionProperty Occupy 1 ~ 2 bits Multi-dimensional time easing animation property

SpatialProperty Occupy 1 ~ 3 bits Spatial easing animation property

Custom Fixed to 1 bit Extension type, custom data reading rules

The example code for reading AttributeFlag based on different AttributeTypes is as follows:

AttributeFlag ReadAttributeFlag (ByteBuffer * byteArray , const AttributeBase * config) {

AttributeFlag flag = { } ;

auto attributeType = config - > attributeType ;

if (attributeType = = AttributeType: : FixedValue) {

flag. exist = true;

return flag;

}

flag. exist = byteArray- > readBitBoolean() ;

if (! flag.exist | |

attributeType = = AttributeType: : Value | |

attributeType = = AttributeType: : BitFlag | |

attributeType = = AttributeType: : Custom) {

return flag;

}

flag. animatable = byteArray- > readBitBoolean() ;

if (! flag. animatable | | attributeType ! = AttributeType: : SpatialProperty) {

return flag;

}

flag. hasSpatial = byteArray- > readBitBoolean() ;

return flag;

}

It can be seen that the FixedValue category does not read data from the Flag area, but directly returns the case where exist is true, indicating
that the data identifying the attributes of this category will always exist.

Note: In order to save file space, AttributeType is not written into the file, but is hardcoded and configured in the parsing code. As the
AttributeType of each attribute is not likely to change, the specific attribute type to be parsed can be known in advance during the parsing
process.

AttributeContent

According to the previous steps, we have been able to decode the AttributeFlag object, and then combined with the known AttributeType, we
can start decoding the corresponding data for each AttributeContent. The following are the parsing rules corresponding to each AttributeType:

• Value: If exist is true, read the AttributeContent data value, otherwise use the default value.

• FixedValue: Ignore all flags and directly read the AttributeContent data value.

• BitFlag: directly use the value of exist to return as Bool data, without reading AttributeContent data.

• SimpleProperty, DiscreteProperty, MultiDimensionProperty, SpatialProperty: If animatable is false, directly follow the reading rules of the
AttributeType Value, and judge whether to read a data value from AttributeContent or use the default value according to exist. If animatable is
true, follow the decoding process of Property. The different Property types of these subdivisions and the hasSpatial flag are only used in
decoding the internal data structure of the Property. The decoding rules inside Property will be described in detail later.

• Custom: All the previous categories can use the general decoding module, but some AttributeContent may not be an attribute. After
configuring the type as Custom, each Tag can specifically define which module this AttributeContent should use for parsing. The exist flag is
used to determine whether there is a corresponding AttributeContent. In this way, custom data blocks can be inserted into the attribute list for
overall storage.

Note: In order to save file space, the default value of each attribute is not written into the file, but is hardcoded and configured in the
parsing code. Because the default value of each attribute is not likely to change, the default value of the attribute to be parsed can be
known in advance during the parsing process.

After the above analysis, we have been able to completely decode the data structure of AttributeBlock. Given any set of attribute lists, you
only need to list the necessary information such as the attribute order, the basic data type of each attribute, the attribute type, and the default
value, and then refer to the previous AttributeBlock rules for decoding. If two columns of Attribute Type and Default Value appear in the
subsequent data structure table, it means that it needs to be parsed according to the AttributeBlock data structure. The AttributeBlock structure
table corresponding to the previous Mask can be defined as follows:

AttributeBlock Structure Table for Mask

Field Data Type Attribute Type Defaults Remarks

id EncodedUint32 FixedValue 0 Mask ID

inverted Bool BitFlag false Indicates whether the mask is inverted

maskMode Uint8 Value 1 Blend mode of the mask

maskPath Path SimpleProperty Empty Path object Vector path of the mask

maskOpacity Uint8 SimpleProperty 255 Transparency of the mask

maskExpansion Float SimpleProperty 0 Edge extension parameters of the mask

: Property
Property is the basic unit of dynamic properties, and the properties on most objects are Property. Because it is widely used, optimizing and
compressing the storage structure of a single Property can significantly reduce the size of the entire file. Property is generally not stored
separately but is stored as an AttributeContent in the AttributeBlock dynamic data structure alongside other Property or Value attributes as an
attribute list. For the analysis of AttributeBlock, please refer to the previous chapter. Therefore, according to the description in the previous
chapters, when we parse to the AttributeContent area corresponding to the Property attribute, we can then access the configuration parameters
such as Data Type, AttributeType, and Default Value, as well as the previously read AttributeFlag data object. Through these auxiliary
parameters, we will start to decode the content of the Property.

Property
The Property structure is mainly composed of the keyframe list of the keyframe structure, and the length of the list can be 0 to more. When
the length of the keyframe is 0 (that is, AttributeFlag.animatable is false), the entire Property attribute contains only one valid value, so it can
be degenerated into the Value attribute for storage, and continue to judge whether to read a data value from AttributeContent or set it as the
default value. This part of the reading rules has been described before, and the content of this chapter continues to describe how to parse the
AttributeContent corresponding to a Property attribute when AttributeFlag.animatable is true. Parsing the structure of a Property is actually
parsing the structure of a set of keyframe lists.

Keyframe
Property usually contains several keyframe information. A key frame includes the start and end time of the frame, as well as the start and
end attribute values, as well as the type of differentiator that identifies the calculation method for attribute values, time easing parameters,
etc. For complex Property attributes, its keyframes may also contain multi-dimensional time easing parameters or additionally contain
spatial easing parameters. Let's first look at the data fields that a keyframe needs to record:

KeyFrame Data Lists

Field Type Remarks

startValue Generic value (any basic data type) Start value

endValue Generic value (any basic data type) End value

startTime Time (Int64) The start time value of the keyframe

endTime Time (Int64) The end time value of the keyframe

interpolationType Enum (Uint8) Interpolation type

bezierOut Point[dimensionality] Time easing parameter array (the first control point of the Bezier curve)

bezierIn Point [dimensionality] Time easing parameter array (the second control point of the Bezier curve)

spatialOut Point Spatial easing parameters (the first control point of the Bezier curve)

spatialIn Point Spatial easing parameters (the second control point of the Bezier curve)

StartValue and endValue represent the start value and end value of this keyframe interval, and the corresponding startTime and endTime
represent the start time and end time of this keyframe interval. Therefore, when the value is equal to startTime, startValue will be returned;
when the value is equal to endTime, endValue will be returned. At the moment between startTime and endTime, the value is determined
by the interpolationType. The interpolation types are as follows::

KeyframeInterpolationType

Type Value Remarks

None 0 Invalid

Linear 1 Linear interpolation

Bezier 2 Use Bezier curve interpolation based on time easing parameters

Hold 3 The entire interval is equal to startValue except for the endTime moment, and endTime
can switch to endValue instantly.

Keyframe

Combining all the above data structures, it can be concluded that not all data fields of the keyframe need to be stored completely. There
are mainly the following scenarios to save storage space:

• When the interpolation type is not equal to Bezier, there is no need to store the time easing parameters bezierOut and bezierIn.

• When the property type is DiscreteProperty, it means that the interpolation type can only be Hold, and there is no need to store
interpolationType. This situation usually occurs when the underlying data type of an attribute is a Bool value or an enumeration. Since its
data is discrete, the intermediate interpolation between true and false is essentially impossible.

• When the property type is MultiDimensionProperty, it means that the time easing parameter is composed of multiple Bezier curves, each
individually controlling the subeasing of the data value, usually appearing on the timeline attribute representing scaling. The specific
number of Bezier curves is determined according to the data types of startValue and endValue. For example, when the data type is Point,
the time easing parameter is a 2-dimensional array, and two Bezier curves control the independent easing of the x and y axes respectively.
For cases where the dimension is not a MultiDimensionProperty, we do not need to determine the dimension based on the underlying data
type. By default, only the one-dimensional time easing parameters are stored.

• When the attribute type is SpatialProperty, it means that the key frame may have spatial easing parameters. At this time, it is necessary to
judge whether the actual current keyframe has these parameters according to the AttributeFlag.hasSpatial flag. Only this attribute needs to
use the third hasSpaital flag on AttributeFlag. For other attribute types, there is no need to judge or store the spatial easing parameters
spatialOut and spatialIn.

In addition to saving storage space through judgment in the above scenarios, we also adopt other compression strategies: when actually
storing the keyframe list, we store one type of data for each keyframe in sequence and then store the next type of data collectively instead of
storing a keyframe and then storing the next keyframe. The advantage of this is that similar data can be compressed centrally. For example,
interpolationType usually only occupies 2 bits, and centralized storage can reduce the extra space waste caused by byte alignment. For
another example, since the startValue and startTime of the next keyframe are always equal to the endValue and endTime of the previous
keyframe, centralized storage can also skip duplicate data between frames that do not need to be stored.

Property
The specific storage structure of the Property is as follows:

Note: This only describes the read storage structure when AttributeFlag.animatable is true. If AttributeFlag.animatable is false, refer to the
previous method to judge whether to read a data value from AttributeContent or use the default value.

Property Types

Field Type Remarks

numFrames EncodedUint32 The length of the keyframe array.

interpolationTypeList UB[2][numFrames] The interpolation type corresponds to each keyframe. It read numFrames
times in total. Skip this block if the property type is DiscreteProperty.

timeList

EncodedUint64[numFrames +1]

The start and end time of each Keyframe. Since the start time of the next
keyframe is equal to the end time of the previous keyframe, only read
numFrames+1 times.

valueList _

PropertyValueList

The start value and end value of each Keyframe. Different basic data types
have different storage methods, and the reading rules of PropertyValueList
will be introduced in detail later.

timeEaseNumBits UB[5] The number of storage bits occupied by each time easing parameter
component.

timeEaseList TimeEaseValueList An array of time easing parameters. The reading rules of
TimeEaseValueList will be introduced in detail later.

spatialFlagList UB[numFrames * 2] An array of flags, indicating whether each subsequent keyframe contains
spatialIn and spatialOut parameters respectively.

spatialEaseNumBits UB[5] The number of storage bits occupied by each spatial easing parameter
component.

spatialEaseList

SpatialEaseValueList

Spatial easing parameter array. The reading rules of
SpatialEaseValueList will be introduced in detail later. If the property
type is not SpatialProperty or AttributeFlag.hasSpatial is false, skip
this block.

Note: A byte alignment is performed at the end of each block read. It will skip the remaining bits that have not been read, start from the next
integer byte position, and then read the next block.

PropertyValueList
The PropertyValue block stores a list of basic data types. The content of the list represents the start value and end value of each keyframe.
Since the start value of the next keyframe is always equal to the end value of the previous keyframe, the total length of the list is numFrames +
1. The specific storage rules of this data list vary according to the basic data type, as shown in the following table:

PropertyValue Storage Method

Type Storage Method

Float[numFrames + 1] Store numFrames + 1 Float data respectively in turn.

Bool[numFrames + 1] Store numFrames + 1 bits in turn, each bit represents a Bool value.

Uint8[numFrames + 1] Compressed and stored as 32-bit continuous unsigned integers, first store numBits of UB[5], and then
store numFrames + 1 UB[numBits] data in turn; each data point represents the original Uint8 value.

Uint32[numFrames + 1] Compressed and stored as 32-bit continuous unsigned integers, first store numBits of UB[5], and then
store numFrames + 1 UB[numBits] data in turn; each data point represents the original Uint32 value.

Point[numFrames + 1]

Usually, numFrames + 1 Point data are stored sequentially. If the property type is SpatialProperty,
divide the two Floats of each Point data by SPATIAL_PRECISION to convert it into a Uint32 list with
a length of (numFrames+1)*2, and then compress and store it as a 32-bit continuous unsigned integer.
The storage rules are the same as above.

Time[numFrames + 1] Store numFrames + 1 EncodedUint 64 data in turn, each data representing the original Time data.

ID[numFrames + 1] Store numFrames + 1 EncodedUint 32 data in turn , each data represents the original ID data .

Color[numFrames + 1] Store numFrames + 1 Color data in turn.

Ratio[numFrames + 1] Store numFrames + 1 Ratio data in turn.

String[numFrames + 1] Store numFrames + 1 String data in turn.

Path numFrames + 1] Store numFrames + 1 Path data in turn.

TextDocument[numFrames + 1] Store numFrames + 1 TextDocument data in turn.

GradientColor[numFrames + 1] Store numFrames + 1 GradientColor data in turn.

TimeEaseValueList

The storage structure of TimeEaseValueList is as follows:

The reading of time easing parameters not only relies on the previous timeEaseNumBits, but also relies on a dimensionality parameter.
Dimensionality represents the dimensions of the bezierIn and bezierOut arrays for each keyframe. It can be deduced from the number of
components of the property type and the basic data type. For example, when the property type is MultiDimensionProperty, for attributes with
a data type of Point, dimensionality is 2; if the property type is not MultiDimensionProperty, dimensionality is always 1. Each item in the
timeEaseList list represents a Float component of the time easing parameter coordinate point. Two Floats form a Point. Usually, each
keyframe of a one-dimensional time easing property has two Points, bezierIn and bezierOut, which means that the 4 Float components in
timeEaseList need to be expressed sequentially. In the case of multi-dimensionality, all dimension time easing parameter arrays of this frame
are read sequentially, and then the data of the next frame is read. In addition, if the current keyframe interpolation type is not Bezier, the
process of reading time easing parameters for this frame will be skipped. The specific parsing code is as follows:

int dimensionality = config. attributeType = = AttributeType: : MultiDimensionProperty ?

config. dimensionality() : 1 ;

auto numBits = byteArray- > readNumBits() ;

for (auto& keyframe: keyframes) {

if (keyframe- > interpolationType ! = KeyframeInterpolationType: : Bezier) {

continue;

}

float x, y;

for (int i = 0; i < dimensionality; i++) {

x = byteArray->readBits(numBits) * BEZIER_PRECISION;

y = byteArray->readBits(numBits) * BEZIER_PRECISION;

keyframe->bezierOut.emplace_back(x, y);

x = byteArray->readBits(numBits) * BEZIER_PRECISION;

y = byteArray->readBits(numBits) * BEZIER_PRECISION;

keyframe- > bezierIn. emplace_ back(x, y) ;

}

}

Spatial EaseValueList

The storage structure of SpatialEaseValueList is as follows:

Note: If the property type is not SpatialProperty or AttributeFlag.hasSpatial is false, this block does not need to be read. The reading of
spatial easing parameters depends on the previously read spatialFlagList and spatialEaseNumBits. The spatialFlagList is twice as long as the
number of keyframes because the spatial easing parameters of each keyframe contain two Point data. The values in the spatialFlagList list in
turn indicate whether the spatialIn and spatialOut of each keyframe exist. If not present, use the default (0, 0) point. In addition, the read data
is an integer, which needs to be multiplied by SPATIAL_PRECISION and converted to Float as the x and y data components of Point. The
specific parsing code is as follows:

int index = 0;

for (auto& keyframe: keyframes) {

auto hasSpatialIn = spatialFlagList[index+ +] ;

auto hasSpatialOut = spatialFlagList[index+ +] ;

if (hasSpatialIn) {

keyframe- > spatialIn. x = byteArray- > readBits(spatialEaseNumBits) * SPATIAL_ PRECISION;

keyframe- > spatialIn. y = byteArray- > readBits(spatialEaseNumBits) * SPATIAL_ PRECISION;

}

if (hasSpatialOut) {

keyframe- > spatialOut. x = byteArray- > readBits(spatialEaseNumBits) * SPATIAL_ PRECISION

keyframe- > spatialOut. y = byteArray- > readBits(spatialEaseNumBits) * SPATIAL_ PRECISION

}

}

PAG uses 10 bits to store TagCode and can store up to 1024 kinds of Tags. Among them, 52 kinds of tags have been used, and the list is as
follows:

TagCode Types

Name Value (Decimal) Remarks

End 0 Tag end identifier

FontTables 1 Font collection, containing multiple fonts

VectorCompositionBlock 2 Vector combination information

CompositionAttributes 3 The basic attribute information of the composition

ImageTables 4 Image collection information

LayerBlock 5 Layer information

LayerAttributes 6 The basic attribute information of layer

SolidColor 7 Border color

TextSource 8 Text information, including: text , font, size, color and other basic information

TextPathOption 9 Text drawing information , including: drawing path, front, back, left, and right
spacing, etc.

TextMoreOption 1 0 Text additional information

ImageReference 1 1 Image reference , pointing to an image

CompositionReference 1 2 Composition reference , pointing to a composition

Transform2D 1 3 2D transform information

MaskBlock 1 4 Mask information

End
The End tag marks the end of the TAG. When the decoder reads this tag, it means that the content of this TAG has been read. If the Tag
contains nesting, when encountering the End mark, you need to jump out of the current Tag to read and transfer to the outer Tag reading logic.

End Structure Table

Type Type Remarks

End Uint16 Tag end identifier

FontTables

ShapeGroup 1 5 Shape information

Rectangle 1 6 Rectangle information

Ellipse 1 7 Ellipse information

PolyStar 1 8 Polygonal star

ShapePath 1 9 Shape path information

Fill 2 0 Fill rule information

Stroke 2 1 Stroke

GradientFill 2 2 Gradient fill

GradientStroke 2 3 Gradient stroke

MergePaths 2 4 Merge paths

TrimPaths 2 5 Trimming paths

Repeater 2 6 Repeater

RoundCorners 2 7 Round corners

Performance 2 8 File performance information, which is used to check whether PAG file
performance meets the standard.

DropShadowStyle 2 9 Drop shadow

BitmapCompositionBlock 4 5 Bitmap sequence frame

BitmapSequence 4 6 Bitmap sequence

ImageBytes 4 7 Image byte stream

ImageBytes2 4 8 Image byte stream (with scaling)

ImageBytes3 4 9 Image byte stream (with transparent channel)

VideoCompositionBlock 5 0 Video sequence frame

VideoSequence 5 1 Video sequence

Font Tables is a collection of font information.

Font Tables Structure Table

Field Type Remarks

count EncodedUint32 Number of fonts

fontData FontData[] Font array

VectorCompositionBlock
VectorCompositionBlock is a collection of vector graphics. It can contain simple vector graphics, and can also contain one or more
VectorComposition.

Vectorcompositionblock Structure Table

Field Type Remarks

id EncodedUint32 Unique identifier

TagBlock TagBlock TagBlock data block, refer to Chapter 3 TagBlock .

Include two TAGs: CompositionAttributes (basic attribute information of the composition),
LayerBlock (layer information)

CompositionAttributes
CompositionAttribute stores the basic attribute information of Composition. It can contain simple vector graphics, and can also contain one or
more VectorComposition

Field Type Remarks

width EncodedInt32 layer width

height EncodedInt32 layer height

duration EncodedUint64 duration

frameRate Float frame rate

backgroundColor Color background color

ImageTables
ImageTables is a collection of image information.

ImageTables Structure Table

Field Type Remarks

count EncodedInt32 number of images

images ImageBytes[count] image array

LayerBlock
LayerBlock is a collection of layer information.

LayerBlock Structure Table

Field Type Remarks

type Uint8 Layer type

id EncodedUint32 unique identifier of layer

Tag Block

TagBlock

TagBlock data block, refer to Chapter 3 TagBlock

Contains Tags: LayerAttributes, LayerAttributes2, MaskBlock, Transform2D, SolidColor, TextSource,
TextPathOption, TextMoreOption, CompositionReference, ImageReference, etc.

LayerAttributes
LayerAttributes is the attribute information of the layer.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

isActive Bool BitFlag true If false , it will not be rendered.

autoOrientation Bool BitFlag false Adaptive screen ratio

parent EncodedUint32 Value 0 Layer ID

stretch Ratio Value (1,1) Stretch ratio

startTime Time Value 0 Start time

blendMode Enumeration (Uint8) Value BlendMode:: Normal Layer blend mode

trackMatteType Enumeration (Uint8) Value TrackMatteType::None Track mask

timeRemap Float SimpleProperty 0.0f

duration Time FixedValue 0 Time interval

SolidColor
SolidColor identifies the border width height and color attribute information.

SolidColor Structure Table

Field Field Type Remarks

solidColor Color Color value

width EncodedInt32 Width

height EncodedInt32 Hight

TextSource

TextSource indicates text information, including text, font, size, color and other basic information.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

sourceText TextDocument DiscreteProperty TextDocument

TextPathOption
TextPathOption indicates text drawing information, including drawing path, front, back, left, and right spacing, etc.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remark

path EncodedUint32 Value 0 Mask ID

reversedPath Bool DiscretePro perty false

perpendicularToPath Bool DiscreteProperty false

forceAlignment Bool DiscreteProperty false

firstMargin Float SimpleProperty 0.0f

lastMargin Float SimpleProperty 0.0f

TextMoreOption
TextMoreOption indicates additional information about the text.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

anchorPointGrouping Enumeration (Uint8) Value ParagraphJustify cation::LeftJustify

groupingAlignment Point MultiDimensionProperty (0 .0)

ImageReference
ImageReference is the image reference tag, which stores the unique ID of an image and can index real image information by ID.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

id EncodedUint32

CompositionReference
CompositionReference is the layer combination index tag, which stores the unique ID of a layer composition and can index real layer
composition by ID.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

id EncodedUint32

copositionStartTime Time start time

Transform2D
Transform2D indicates the 2D transformation information, including anchor point, scaling, rotation, x-axis offset, y-axis offset and other
information.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

anchorPoint Point Value (0.0) anchor point

position Point Value (0.0) location information

xPosition Float Value 0.0 x-axis offset

yPosition Float Value 0.0 y-axis offset

scale Point Value (0.0) scaling

rotation Float Value 0.0 rotation

opacity Uint8 Value 255 Transparency (0~255)

Mask
Mask tags.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

id EncodedUint32 FixedValue 0

inverted Bool BitFlag false

maskMode Enumeration (Uint8) Value MaskMode::Add

maskPath Path SimpleProperty

maskOpacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

maskExpansion Float SimpleProperty 0.0f

ShapeGroup
ShapeGroup indicates the drop shadow tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration (Uint8) Value BlendMode::Normal

anchorPoint Point SpatialProperty (0.0) anchor point

position Point SpatialProperty (0.0) location information

scale Point MultiDimensionProperty (1, 1) scaling

skew Float SimpleProperty 0.0

skewAxis Float SimpleProperty 0.0 y-axis offset

rotation Float SimpleProperty 0.0 rotation

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

TagBlock TagBlock TagBlock data block, refer to Chapter 3 TagBlock.

Rectangle
Rectangular tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

reversed Bool BitFlag false

size Point MultiDimensionProperty (100, 100) Width and height

position Point SpatialProperty (0,0) Location

roundness Float SimpleProperty 0.0f

Ellipse
Ellipse tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

reversed Bool BitFlag false

size Point MultiDimensionProperty (100,100) Width and height

position Point SpatialProperty y (0,0) Location

PolyStar
Polygonal star tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

ShapePath
ShapePath tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

shapePath Path SimpleProperty

Fill Tags
Fill tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration (Uint8) Value BlendMode::Normal

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup

fillRule Enumeration (Uint8) Value FillRule::NonZeroWinding

color Color SimpleProperty Red

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

Stroke
Stroke tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration(Uint8) Value BlendMode::Normal

reversed Bool BitFlag false

polyType Enumeration (Uint 8) Value PolyStarType::Star

points Float SimpleProperty 5.0f

position Point SpatialProperty y (0,0) Location

rotation Float SimpleProperty 0.0f

innerRadius Float SimpleProperty 50.0f

outerRadius Float SimpleProperty 100.0f

innerRoundness Float SimpleProperty 0.0f

outerRoundness Float SimpleProperty 0.0f

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup

lineCap Enumeration (Uint8) Value LineCap::Butt

lineJoin Enumeration (Uint8) Value LineJoin::Miter

miterLimit Float Simple Property 4.0f

color Color Simple Property White

opacity Uint8 Simple Property 255 Transparency (0 ~ 255)

strokeWidth Float SimpleProperty 2.0f

GradientFill
GradientFill tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration (Uint8) Value BlendMode::Normal

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup

fillRule Enumeration (Uint8) Value FillRule::NonZeroWinding

fillType Enumeration (Uint8) Value GradientFillType::Linear

startPoint Point SpatialProperty (0,0) start point

endPoint Point SpatialProperty (100,0) end point

colors Color[] SimpleProperty

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

GradientStroke
GradientStroke tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration (Uint8) Value BlendMode::Normal

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSam
eGroup

fillType Enumeration (Uint8) Value GradientFillType::Linear

startPoint Point SpatialProperty (0,0) start point

endPoint Point SpatialProperty (100 ,0) end point

color Color SimpleProperty White

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

strokeWidth Float SimpleProperty 2.0f

lineCap Enumeration (Uint8) Value LineCap::Butt

lineJoin Enumeration (Uint8) Value LineJoin::Miter

miterLimit Float SimpleProperty 4.0f

dashLength UB[3] dashLength = UB[3] + 1

dashOffsetFlag . exist UB[1] Whether to contain the
dashOffset tag

dashOffsetFlag.animatable UB[1] if dashOffsetFlag.exist= 1

MergePaths
MergePaths tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

mode Enumeration (Uint 8) Value MergePathsMode::Add

TrimPaths
TrimPaths tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

start Float SimpleProperty 0.0f

end Float SimpleProperty 100.0f

offset Float SimpleProperty 4.0f

trimType Enumeration (Uint8) Value TrimPathsType::Simultaneously

Repeater
Repeater tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

composite Enumeration
(Uint8)

Value CompositeOrder: : BelowPreviousInSameGroup

copyes Float SimpleProperty 3.0f

offset Float SimpleProperty 0.0f

anchorPoint Poi nt SpatialProperty (0,0)

position Point SpatialProperty (100,0)

scale Point MultiDimensionProperty (1.1) scaling

rotation Float SimpleProperty 0.0f

startOpacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

end Opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)

RoundCorners
Round Corners tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

radius Float SimpleProperty 10.0f

Performance
Performance tag mainly stores PAG performance index data.

Performance Structure Table

Field Field Type Remarks

renderingTime EncodedInt 64 Time cost of rendering

imageDecodingTime EncodedInt 64 Time cost of decompression

presenttingTime EncodedInt 64

graphicsMemory EncodedInt 64 Rendering memory

DropShadowStyle
DropShadowStyle tag.

AttributeBlock Structure Table

Field Field Type Attribute Type Defaults Remarks

blendMode Enumeration
(Uint8)

DiscreteProperty BlendMode::Normal

color Color SimpleProperty Black

opacity Uint8 SimpleProperty 191 Transparency (0 ~ 255)

angle Float SimpleProperty 120.0f

distance Float SimpleProperty 5.0f

size Float DiscreteProperty 5.0f

BitmapCompositionBlock
BitmapCompositionBlock is the tag of the bitmap sequence frame.

AttributeBlock Structure Table

Field Field Type Remarks

id EncodedUint32 unique identifier

TagBlock TagBlock TagBlock data block, refer to Chapter 3 TagBlock .

Contain two TAGs: CompositionAttributes (basic attribute information of composition) and
BitmapSequence (bitmap information)

BitmapSequence
BitmapSequence tag.

BitmapSequence Structure Table

ImageBytes
ImageBytes is a kind of image tag that stores compressed image-related attribute information.

ImageBytes Structure Table

Field Field Type Remarks

id EncodedUint32

fileBytes ByteData image byte stream

ImageBytes2
ImageBytes2 is version 2 of the image tag, which not only stores the information of ImageBytes but also allows the recording of the scaling
parameters of the image. Usually, the image is stored according to the actual maximum size used, not the original size.

Field Field Type Remarks

width EncodedUint32

height EncodedUint32

frameRate Float

frameCount EncodedUint 32 Number of bitmap frames

isKeyFrameFlag[frameCount] UB[frameCount] frameCount flags whether they are keyframes

bitmapRect[frameCount] BitmapRect[frameCount] frameCount data of BitmapRect

ImageBytes 2 Structure Table

Field Field Type Remarks

id EncodedUint32

fileBytes ByteData image byte stream

scaleFactor Float scaling ratio (0 ~ 1.0)

ImageBytes3
ImageBytes3 is version 3 of the image tag. In addition to containing the information of ImageBytes2, it also allows recording the image after
removing the transparent border.

Field Field Type Remarks

id EncodedUint32

fileBytes ByteData image byte stream

scaleFactor Float scaling ratio (0 ~ 1.0)

width _ EncodedInt32 original picture width

width EncodedInt32 original picture width

anchorX EncodedInt32 The x-axis coordinate of the starting point of the opaque area in the original image

anchorY EncodedInt32 The y-axis coordinate of the starting point of the transparent area in the original image

VideoCompositionBlock
VideoCompositionBlock stores one or more video sequence frames of different sizes.

VideoCompositionBlock Structure Table

Field Field Type Remarks

id EncodedUint32 unique identifier

hasAlpha Bool Whether there is an Alpha channel

CompositionAttributes CompositionAttributesTag

TagBlock

TagBlock

TagBlock data block, refer to Chapter 3 TagBlock .

Contains two TAGs: CompositionAttributes (basic attribute information of
composition) and VideoSequence (bitmap information)

VideoSequence
VideoSequence stores 1 version of the video sequence frame structure.

VideoSequence Structure Table

Field Field Type Remarks

width EncodedUint32

height EncodedUint32

frameRate Float

alphaStartX EncodedInt32 This value will only exist if the hasAlpha read from
VideoCompositionBlock is 1.

alphaStartY EncodedInt32 This value will only exist if the hasAlpha read from
VideoCompositionBlock is 1.

spsData ByteData The byte stream that has been read does not contain (0, 0, 0, 1) four-byte
Start Code

ppsData ByteData The byte stream that has been read does not contain (0, 0, 0, 1) four-byte
Start Code

frameCount EncodedUint32 Number of bitmap frames

isKeyFrameFlag

[frameCount]

UB[frameCount] frameCount flags whether they are key frames

videoFrames VideoFrame[frameCount] Number of video frames

